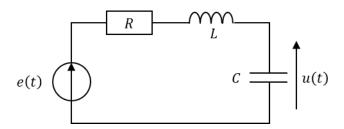
Chapitre E4 – Régime sinusoïdal forcé

I) RSF et notation complexe

1) Qu'est-ce qu'un RSF?

Prenons par exemple le circuit RLC alimenté par un générateur e(t).



On peut montrer que l'ED vérifiée par u(t) est :

$$\frac{d^2u}{dt^2} + \frac{\omega_0}{Q} \frac{du}{dt} + \omega_0^2 \ u(t) = \omega_0^2 \ e(t)$$

La solution de cette ED est:

$$u(t) = u_{SEH}(t) + u_{SP}(t)$$

Dans le chapitre E3, on a étudié la SEH (rappel : la forme dépend de la valeur de Q). Dans tous les cas, $u_{\text{SEH}}(t) \to 0$ pour $t \gg \tau$, temps caractéristique de **régime transitoire**. Pour $t \gg \tau$, on est dans un **régime établi**.

Dans le chapitre E3, e(t) = E. On a alors montré que $u_{SP}(t) = E$. Le régime établi est un régime stationnaire : toutes les grandeurs sont constantes.

Dans ce chapitre, $e(t) = E \cos(\omega t)$. Dans ce cas, $u_{\rm SP}(t) = U_m \cos(\omega t + \varphi)$. Le régime établi est un **régime sinuoïdal** forcé : toutes les grandeurs sont sinusoïdale.

Objectif du chapitre :

Trouver l'expression d'une grandeur en RSF, ie. l'allure du signal après un temps $t \gg \tau$. On connaît la forme générale :

$$u_{\rm SP}(t) = U_m(\omega) \cos(\omega t + \varphi(\omega))$$

Il suffit donc déterminer l'amplitude $U_m(\omega)$ et la phase $\varphi(\omega)$ du signal. Comment nous allons le voir, ce sont des fonctions de ω , pulsation du générateur.

2) Lien entre RSF et régime stationnaire

On remarque que:

$$e(t) = E \cos(\omega t) \quad \Rightarrow \quad e(t) \underset{\omega \to 0}{=} E$$

Le régime stationnaire est un cas particulier de RSF (cas où $\omega \to 0$). Ainsi, la solution obtenue en RSF doit tendre vers celle obtenue en régime permanent lorsque $\omega \to 0$. On parle de « comportement en basses fréquences ».

3) Représentation complexe d'un signal

Soit un signal de la forme :

$$u(t) = U_m \cos(\omega t + \varphi)$$

On associe à ce signal réel u(t) un signal complexe $\underline{u}(t)$. On note j l'imaginaire pur $j^2=-1$ pour ne pas confondre avec l'intensité électrique.

$$\underline{u}(t) = U_m \ e^{j(\omega t + \varphi)}$$

On remarque alors que :

$$u(t) = \mathcal{R}e\Big(\underline{u}(t)\Big)$$

On isole la partie temporelle du signal complexe :

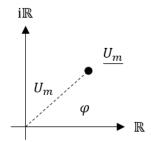
$$\underline{u}(t) = U_m e^{j\varphi} e^{j\omega t} = \underline{U}_m e^{j\omega t}$$

Le nombre complexe $\underline{U_m = U_m \ e^{j\varphi}}$ s'appelle l'**amplitude complexe** du signal. L'objectif du chapitre est donc de trouver l'expression de $\underline{U_m(\omega)}$.

Une fois ce nombre trouvé :

$$u(t) = U_m \cos(\omega t + \varphi)$$
 avec :
$$\begin{cases} U_m = |\underline{U_m}| \\ \varphi = \arg(\underline{U_m}) \end{cases}$$

Les amplitudes complexes peuvent se représenter dans le plan complexe :



4) Calcul en complexe

Soit un signal sinusoïdal et son signal complexe associé :

$$u(t) = U_m \cos(\omega t + \varphi)$$
 \leftrightarrow $\underline{u}(t) = \underline{U}_m e^{j\omega t}$

Propriétés :

Dériver un signal complexe revient à le multiplier par $j\omega$.

$$\frac{d\underline{u}}{dt} = \frac{d}{dt} \left(\underline{U_m} \ e^{j\omega t} \right) = j\omega \times \underline{U_m} \ e^{j\omega t} = j\omega \times \underline{u}$$

Intégrer un signal complexe revient à le diviser par $j\omega$.

$$\int \underline{u} \ dt = \int \underline{U_m} \ e^{j\omega t} \ dt = \frac{\underline{U_m}}{j\omega} \ e^{j\omega t} = \frac{\underline{u}}{j\omega}$$

II) Impédance complexe

1) Définition

Soit un dipôle en RSF. On note :

 $\circ\,$ La tension à ses bornes :

$$u(t) = U_m \cos(\omega t + \varphi_u)$$
 \leftrightarrow $\underline{u}(t) = U_m e^{j\varphi_u} e^{j\omega t} = U_m e^{j\omega t}$

 $\circ\,$ L'intensité qui le traverse :

$$i(t) = I_m \cos(\omega t + \varphi_i)$$
 \leftrightarrow $\underline{i}(t) = I_m e^{j\varphi_i} e^{j\omega t} = \underline{I_m} e^{j\omega t}$

On appelle **impédance complexe** du dipôle, la grandeur notée $\underline{Z}(\omega)$ et définit par :

$$\label{eq:definition} \boxed{\underline{u} = \underline{Z} \times \underline{i}} \quad \Rightarrow \quad \underline{Z}(\omega) = \frac{\underline{u}}{\underline{i}} = \frac{\underline{U}_m}{\underline{I}_m} = \frac{U_m}{I_m} \ e^{j(\varphi_u - \varphi_i)}$$

Ainsi.

$$\begin{cases} |\underline{Z}| = \frac{U_m}{I_m} & \text{rapport des amplitudes} \\ \arg(\underline{Z}) = \varphi_u - \varphi_i & \text{déphasage entre } u \text{ et } i \end{cases}$$

2) Dipôles usuels

 $\underline{\text{R\'esistance}}$:

$$u = Ri \quad \Rightarrow \quad \underline{u} = R\underline{i} \quad \Rightarrow \quad \underline{Z} = R$$

 $\underline{\text{Bobine}}$:

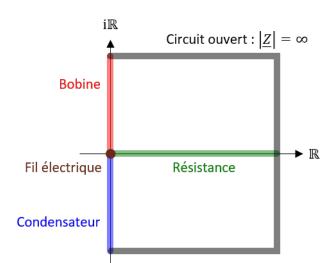
$$u = L \frac{di}{dt} \quad \Rightarrow \quad \underline{u} = L \frac{d\underline{i}}{dt} \quad \Rightarrow \quad \underline{u} = L \times j\omega\underline{i} \quad \Rightarrow \quad \underline{Z} = j\omega L$$

 $\underline{\text{Condensateur}}:$

$$i = C \frac{du}{dt} \quad \Rightarrow \quad \underline{i} = C \frac{d\underline{u}}{dt} \quad \Rightarrow \quad \underline{i} = C \times j\omega\underline{u} \quad \Rightarrow \quad \underline{Z} = \frac{1}{j\omega C}$$

Fil électrique : on rappelle que u(t) = 0 (donc $U_m = 0$) quelque soit la valeur de i(t). On en déduit : $\underline{Z} = 0$

<u>Circuit ouvert</u>: on rappelle que i(t)=0 (donc $I_m=0$) quelque soit la valeur de u(t). On en déduit : $|\underline{Z}|=\infty$ Bilan graphique :



3) Comportements BF et HF

Le comportement d'un dipôle en RSF dépend de ω , la pulsation du générateur. On appelle **basses fréquences** (BF) les fréquences telles que $\omega \to 0$ et **hautes fréquences** (HF) les fréquences telles que $\omega \to \infty$. Plus précisément, tout circuit possède une pulsation caractéristique ω_0 . Les BF sont telles que $\omega \ll \omega_0$ et les HF sont telles que $\omega \gg \omega_0$.

On introduit également $x = \frac{\omega}{\omega_0}$ la **pulsation réduite**.

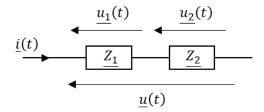
Rappel : le cas $\omega=0$ correspond au régime station naire.

On en déduit :

Dipôle	Impédance	$BF: \begin{cases} \omega \ll \omega_0 \\ x \ll 1 \end{cases}$	$HF: \begin{cases} \omega \gg \omega_0 \\ x \gg 1 \end{cases}$
Résistance	$\underline{Z} = R$	$\underline{Z} = R$	$\underline{Z} = R$
Bobine	$\underline{Z}=j\omega L$	$\underline{Z} \to 0$ Fil électrique	$ \underline{Z} o \infty$ Circuit ouvert
Condensateur	$\underline{Z} = \frac{1}{j\omega C}$	$ \underline{Z} \to \infty$ Circuit ouvert	$\underline{Z} \to 0$ Fil électrique

On retrouve bien en BF les comportements du condensateur et de la bobine trouvés au chapitre E1 en régime stationnaire.

4) Association d'impédances en série



Deux impédances en série sont équivalentes à une impédance unique de valeur :

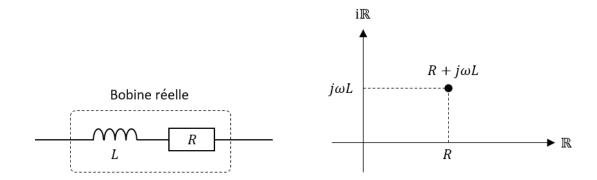
$$\underline{Z_{eq}} = \underline{Z_1} + \underline{Z_2}$$

Deux impédances en série forment un pont diviseur de tension.

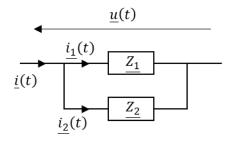
$$\underline{u_1} = \underline{\frac{Z_1}{Z_1 + Z_2}} \underline{u} \quad \text{et} \quad \underline{u_2} = \underline{\frac{Z_2}{Z_1 + Z_2}} \underline{u}$$

Application : bobine réelle

Une bobine réelle peut se modéliser comme l'association d'une inductance pure et d'une résistance.



5) Association d'impédances en dérivation



Deux impédances en dérivation sont équivalentes à une impédance unique de valeur :

$$\boxed{\frac{1}{\underline{Z_{eq}}} = \frac{1}{\underline{Z_1}} + \frac{1}{\underline{Z_2}} \quad \Leftrightarrow \quad \underline{Z_{eq}} = \frac{\underline{Z_1} \ \underline{Z_2}}{\underline{Z_1} + \underline{Z_2}}}$$

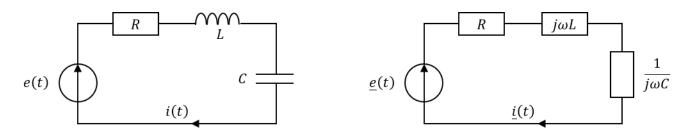
Deux impédances en dérivation forment un pont diviseur de courant.

$$\underline{i_1} = \frac{\underline{Z_2}}{\underline{Z_1} + \underline{Z_2}} \underline{i} \quad \text{et} \quad \underline{i_2} = \frac{\underline{Z_1}}{\underline{Z_1} + \underline{Z_2}} \underline{i}$$

III) Application: intensité du RLC en RSF

1) Amplitude complexe

On considère le circuit RLC soumis à une tension sinusoïdale : $e(t) = E \cos(\omega t)$.



On veut étudier l'intensité i(t) en RSF. On passe en notation complexe :

$$\begin{cases} e(t) = E \cos(\omega t) & \leftrightarrow & \underline{e}(t) = E e^{j\omega t} \\ i(t) = I_m \cos(\omega t + \varphi) & \leftrightarrow & \underline{i}(t) = \underline{I_m} e^{j\omega t} \text{ avec : } \underline{I_m} = I_m e^{j\varphi} \end{cases}$$

La loi des mailles donne :

$$\underline{e}(t) = \left(R + j\omega L + \frac{1}{j\omega C}\right)\underline{i}(t) \quad \Rightarrow \quad E = \left(R + j\omega L + \frac{1}{j\omega C}\right)\underline{I_m}$$

À ce stade, la variable n'est plus le temps t mais la pulsation ω du générateur.

$$\boxed{\frac{I_m(\omega) = \frac{E}{R + j\omega L + \frac{1}{j\omega C}}}$$

Exercice: mettre $\underline{I_m}$ sous la forme canonique suivante (à ne pas connaître) et exprimer I_0 , ω_0 et Q.

$$\underline{I_m}(x) = \frac{I_0}{1 + jQ\left(x - \frac{1}{x}\right)} \quad \text{avec} : \quad x = \frac{\omega}{\omega_0}$$

On a :

$$\underline{I_m} = \frac{E/R}{1 + j\left(\frac{\omega L}{R} - \frac{1}{\omega RC}\right)} = \frac{I_0}{1 + j\left(\frac{\omega Q}{\omega_0} - \frac{Q\omega_0}{\omega}\right)} \quad \Rightarrow \quad \boxed{I_0 = \frac{E}{R}} \qquad \frac{Q}{\omega_0} = \frac{L}{R} \quad \text{et} \quad Q\omega_0 = \frac{1}{RC}$$

On multiplie les deux dernières relations :

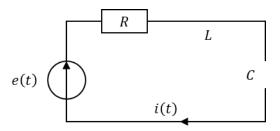
$$Q^2 = \frac{L}{R^2 C} \quad \Rightarrow \quad \boxed{Q = \frac{1}{R} \sqrt{\frac{L}{C}}} \quad \Rightarrow \quad \boxed{\omega_0 = \frac{RQ}{L} = \frac{1}{\sqrt{LC}}}$$

2) Comportements BF et HF

Étudions les comportements BF et HF de $\underline{I_m}(\omega)$.

Comportement BF

Circuit équivalent :



En BF, le condensateur se comporte comme un circuit ouvert, on va donc trouver que $i(t) \simeq 0$. Plus précisément,

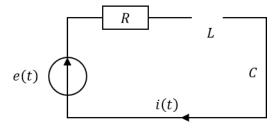
$$x \ll 1 \quad \Rightarrow \quad \underline{I_m} \simeq \frac{I_0}{-jQ/x} = \frac{jI_0x}{Q} \quad \Rightarrow \quad \begin{cases} I_m = \left|\underline{I_m}\right| = \frac{I_0x}{Q} \to 0 \\ \varphi = \arg(\underline{I_m}) = \frac{\pi}{2} \end{cases}$$

Le signal réel vaut donc :

$$i(t) \simeq \frac{I_0 \omega}{\omega_0 Q} \cos \left(\omega t + \frac{\pi}{2}\right) = -EC\omega \sin(\omega t)$$

Comportement HF

Circuit équivalent :



En HF, la bobine se comporte comme un circuit ouvert, on va donc trouver que $i(t) \simeq 0$. Plus précisément,

$$x \gg 1 \quad \Rightarrow \quad \underline{I_m} \simeq \frac{I_0}{jQx} = -\frac{jI_0}{Qx} \quad \Rightarrow \quad \begin{cases} I_m = \left|\underline{I_m}\right| = \frac{I_0}{Qx} \to 0 \\ \varphi = \arg(\underline{I_m}) = -\frac{\pi}{2} \end{cases}$$

Le signal réel vaut donc :

$$i(t) \simeq \frac{I_0 \omega_0}{\omega Q} \, \cos\!\left(\omega t - \frac{\pi}{2}\right) = \frac{E}{\omega L} \, \sin(\omega t)$$

3) Solution exacte

Cherchons à mettre $\underline{I_m}(x)$ sous la forme :

$$\underline{I_m}(x) = I_m \ e^{j\varphi} = I_m \left(\cos(\varphi) + j \ \sin(\varphi) \right) = \frac{I_0}{1 + jQ \left(x - \frac{1}{x} \right)}$$

Amplitude

On prend le module de I_m :

$$\boxed{I_m(x) = \frac{I_0}{\sqrt{1 + Q^2 \left(x - \frac{1}{x}\right)^2}}} = \frac{I_0}{\sqrt{g(x)}} \quad \text{avec} : \quad g(x) = 1 + Q^2 \left(x - \frac{1}{x}\right)^2$$

Phase

On multiplie par le complexe conjugué du dénominateur, puis on utilise le fait que :

$$\tan(\varphi) = \frac{\mathcal{I}m(I_m(x))}{\mathcal{R}e(I_m(x))}$$

Ainsi,

$$I_m(x) = \frac{I_0}{1 + jQ\left(x - \frac{1}{x}\right)} \times \frac{1 - jQ\left(x - \frac{1}{x}\right)}{1 - jQ\left(x - \frac{1}{x}\right)} = \frac{I_0}{g(x)} \times \left[1 - jQ\left(x - \frac{1}{x}\right)\right] \quad \Rightarrow \quad \left[\tan(\varphi) = -Q\left(x - \frac{1}{x}\right)\right]$$

4) Phénomène de résonance

 $\underline{\text{D\'efinition}}$: une grandeur possède une **r\'esonance** s'il existe une pulsation ω qui maxime son amplitude.

Existe-t-il une résonance en intensité? On cherche donc s'il existe un x qui maximise $I_m(x)$. Il faut donc chercher un minimum de g(x). Cela se produit pour $x_{res} = 1$

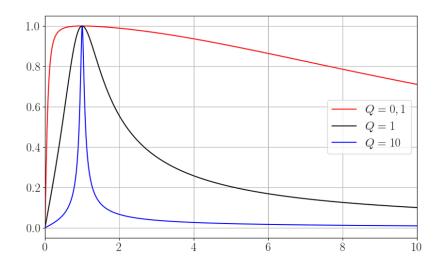
Il y a résonance en intensité lorsque la pulsation du générateur (ω) est égale à la pulsation propre du circuit (ω_0).

$$x = 1$$
 \Rightarrow $\underline{I_m} = I_0 = \frac{E}{R}$ \Rightarrow
$$\begin{cases} I_m = |\underline{I_m}| = \frac{E}{R} \\ \varphi = \arg(\underline{I_m}) = 0 \end{cases}$$

Le signal réel vaut donc :

$$i(t) = \frac{E}{R} \cos(\omega t)$$

Propriété (admise) : plus Q est grand, plus la résonance est étroite.



IV) Étude d'un système mécanique en RSF

Exercice TD : Résonance en élongation